Четные и нечетные числа

Поскольку мы определили деление как последовательное многократное вычитание, в результате которого получают ноль, оказывается, что оно не всегда возможно. Попробуем разделить 7 на 2.Четные и нечетные числа

В результате повторного вычитания мы получим 7-2-2-2=1, и здесь нам придется остановиться. Если мы вычтем еще одну двойку, мы окажемся в области отрицательных чисел. Даже если мы признаём существование отрицательных чисел, а древние о них не знали, мы не можем проводить вычитание в области отрицательных чисел. Предположим, мы делаем еще несколько шагов: 1-2=-1, следующий шаг: 1-2=-3, затем -3-2=-5, и так до бесконечности. Где же нам остановиться? Похоже, наша система дала сбой.

Попробуем пойти другим путем. Вспомним о таблице умножения. Конечно, мы не найдем там числа, которое при перемножении на 2 даст 7, но 2х3=6, а 2х4=8.

Следовательно, если мы определяем деление как последовательное вычитание, то в каких-то случаях деление возможно, а в каких-то нет.

Древних греков изумляло это свойство чисел, и они дали ему своеобразное толкование.

Какие числа делятся на 2, а какие не делятся? 1 не делится, 2 делится, 3 не делится, 4 делится, 5 не делится, 6 делится...

Еще в древние времена числа разделили на те, которые делятся на 2, и на те, которые на 2 не делятся. Математики Древней Греции считали, что числа заключают в себе мистический смысл. По их представлениям, те числа, которые делятся на 2, имеют женское начало и являются несчастливыми. Те числа, которые не делятся на 2, греки считали мужскими и счастливыми. (Учтите, греческие математики были исключительно мужчинами и, конечно, все счастье присвоили себе.)

В обыденной жизни делимость числа на 2 имела большое значение, поскольку часто приходилось делить определенное количество предметов между двумя людьми. Делить по справедливости – это лучший способ избежать ссоры.

Самый простой способ справедливого дележа в те далекие времена, когда люди плохо разбирались в арифметике, – это разложить предметы в две кучки так, чтобы каждому предмету в одной стопке соответствовал один предмет в другой. Представим себе эти предметы в виде фишек, которые можно складывать в столбики (как показано на рисунке). Если общее число предметов делится на 2, то мы получим два столбика и в каждом – одинаковое ко­личество фишек. Если вначале у нас было 16 фишек, то мы получим два столбика одинаковой высоты по 8 фишек, поскольку число 16 делится на 2, то есть является четным числом.

Если же вначале у нас было 17 фишек, то мы получим два столбика неравной высоты, в одном будет 8 фишек, а в другом на одну фишку больше, поскольку число 17 не делится на 2, то есть является нечетным числом. Делимость или неделимость на другие числа также подчиняется определенным зависимостям, но гораздо более сложным, чем разделение четные - нечетные.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (Проголосуйте первым!)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>