Умножение и деление десятичных дробей

С десятичными дробями намного проще производить разные действия, чем с обычными, но здесь также есть свои недостатки. Например, необходимо очень тщательно следить за положением десятичной запятой.

Например, рассмотрим пример умножения: 0,2х0,2.Умножение и деление десятичных дробей

Вы можете попробовать решить этот пример по аналогии со сложением: 2+2=4, также 2x2=4, тогда, поскольку 0,2+0,2=0,4. Возможно, и 0,2х0,2=0,4? Нет, этого не может быть, и я сейчас докажу вам это.

Перейдем обратно к обыкновенным дробям, с которыми мы научились так хорошо обращаться: 0,2=\frac{2}{10}. Теперь перемножим дроби по старой методике: \frac{2}{10} \times \frac{2}{10}=\frac{4}{100} (числитель умножаем на числитель, знаменатель на знаменатель). А в деся­тичных дробях — это 0,04. Следовательно, 0,2 х 0,2 отнюдь не равно 0,4. 0,2х0,2=0,04. Мы можем решить еще несколько примеров на умножение десятичных дробей, заменяя их на эквиваленты в обычных дробях. Например: 0,82х0,21=0,1772, а 0,82х2,1=1,772. (Это можно проверить следующим образом: \frac{82}{100} \times \frac{21}{100}=\frac{1772}{10000}, а \frac{82}{100} \times \frac{21}{10}=\frac{1772}{1000}.)

Теперь мы можем сформулировать общее правило:

При умножении десятичных дробей количество цифр справа от десятичной запятой в ответе равно общему количеству цифр справа от десятичной запятой в перемножаемых числах.

Так, при умножении 0,2х0,2 общее количество цифр справа от десятичной запятой в перемножаемых числах равно 2, и это означает, что 0,2х0,2=0,04 (ноль справа от десятичной запятой также является значащей цифрой).

Естественно, что если один из сомножителей является целым числом, то он не влияет на положение десятичной запятой. Положение десятичной запятой в произведении будет таким же, как и в том со­множителе, который является десятичной дробью.

То есть 0,2х2=0,4; 1,5х5=7,5; а 1,1х154=169,4.

Эти результаты соответствуют правилу умножения, и в любом случае количество цифр справа от десятичной запятой в ответе равно общему количеству цифр справа от десятичной запятой в перемножаемых числах.

Определить положение запятой в случае деления десятичных дробей можно по аналогичной методике, действуя в обратном порядке. Но обычно при делении процедуру стараются упростить и приводят делитель или знаменатель (если деление проводят с помощью обычных дробей) к виду целого числа, не содержащего значащих чисел справа после запятой.

Предположим, нам надо 1,82 разделить на 0,2. Это выражение можно записать как \frac{1,82}{0,2}. Не изменяя величины дроби, умножаем числитель и знаменатель на 10. Тогда 1,82х10 (в соответствии с правилом определения положения десятичного знака) равно 18,20, или 18,2, поскольку ноль, стоящий справа после последней значащей цифры, не изменяет величины числа и, следовательно, его можно опустить. Точно так же 0,2х10=2,0, или просто 2 (поскольку 2 плюс ноль десятых равно 2).

Следовательно, дробь можно записать как \frac{18,2}{2} – и теперь знаменатель является целым числом, следовательно, при делении положение десятичного знака после запятой не меняется, так же как и в случае деления. Раз в числителе одна значащая цифра справа после запятой, то и результат должен иметь одну значащую цифру справа после запятой, то есть — \frac{18,2}{2}=9,1.

Освоив деление десятичных дробей, мы сможем переводить обычные дроби в десятичные. Предположим, нам нужно найти десятичный эквивалент для \frac{1}{40}. Мы можем представить эту дробь в виде \frac{1,000}{40}, а затем произвести деление. Поскольку мы делим на целое число, то положение десятичной запятой не меняется. Проведем деление:деление десятичных дробей

Таким образом, мы показали, что десятичный эквивалент \frac{1}{40} равен 0,025. Это можно проверить, переведя 0,025 в обычную дробь: 0,025=\frac{2}{100}+\frac{5}{1000}, или \frac{20}{1000}+\frac{5}{1000}, или \frac{25}{1000}, или если произвести деление, то получим \frac{1}{40}.

Ну, а если вы все-таки допустили ошибку при исчислении находясь заграницей, то что бы не выглядеть глупо в глазах иностранцев, обязательно надо исправится и извинится. Для тех, которые, как и я, не знаю, как извиниться по-английски, рекомендую почитать статью на сайте e-english.ru. Это значительно улучшит ваши познания и даст возможность не делать ошибок, хотя бы в этом.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (7 голосов, рейтинг: 2,57 с 5)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>