Простые и составные числа

В области деления было сделано еще одно открытие: некоторые числа делятся нацело более чем на одно меньшее число. Например, 60 делится нацело на 2, 3, 4, 5, 6, 10, 12, 15, 20 и 30. Все эти числа называются делителями числа 60. Следовательно, у числа 60 есть десять различных множителей.простые и составные числа

Кроме того, есть еще два множителя: это единица и само число 60. В конце концов, 60:60=1, поскольку любое число, поделенное на самое себя, дает единицу. Другой множитель – это 1. Действительно, 60:1=60. Любое число, поделенное на 1, остается неизменным, то есть 1 – это универсальный множитель.

Поскольку каждое число делится без остатка на единицу и на себя самое, греки, которые с удовольствием решали всякие головоломки, связанные с множителями, просто отбрасывали эти два множителя. Что же может быть в них интересного, если такие множители есть у всех чисел? (Кроме того, теперь мы можем сказать, что у каждого числа есть отрицательные множители. Например, у числа 60 – это -2, -3, -4, -5, -6, -10, -12, -15, -20 и -30. Но грекам отрицательные числа не были известны, и, кроме того, эти отрицательные сомножители фактически не дают нам никакой новой информации, поэтому эти сомножители мы также не будем рассматривать.)

Если у числа 60 10 сомножителей, то его соседям по числовой оси не так повезло. Например, у числа 58 только 2 сомножителя, 2 и 29, у числа 62 – 2 и 31. Независимо от того, сколько сомножителей имеет данное число, если такие сомножители существуют, такое число называется составным, поскольку его можно составить из других, меньших чисел, перемноженных между собой. Так, число 58 – это 2х29, а число 62 – это 2х31.

Число 60 более сложное, поскольку у него несколько сомножителей. Его можно представить как 2х30, но и число 30 является составным, и его можно представить как 2х15, причем 15 также составное число, равное 3x5. Таким образом, мы имеем 60=2x2x3x5.

Мы не делали никаких попыток разбить на множители числа 2, 3 и 5. Да это и невозможно. Таким же числом, у которого нет других сомножителей, кроме единицы и себя самого, является 29 и 31. Другими словами, мы с вами убедились, что существуют числа, которые невозможно разделить без остатка на другие сомножители, кроме единицы и самого числа.

Числа, которые невозможно разбить на сомножители, называются простыми числами, в отличие от составных чисел, которые на множители разбить можно. Люди часто видят в числах какой-то мистический смысл, и с этой точки зрения могло бы показаться, что именно простые числа появились первыми, ведь любые составные числа получаются при перемножении простых чисел. Скажем, после того, как появились числа 2, 3 и 5, можно составить число 60, равное 2х2х3х5.

Может показаться, что если мы пойдем вверх по числовой оси, то возможность найти следующее простое число уменьшается и в конце концов какое-то простое число станет самым большим возможным простым числом. Но это не соответствует действительности. Еще 2200 лет тому назад греческий математик Эвклид доказал, что не существует такого сколь угодно большого простого числа, для которого нельзя было бы найти еще большее. То есть самого большого простого числа в принципе не существует.

Как мы уже вспоминали, греки любили разгадывать разные числовые головоломки и выискивать закономерности. Например, они вычисляли суммы сомножителей, на этот раз включая единицу, для разных чисел и смотрели, что же получается. Они выяснили, что суммы сомножителей могут быть меньше, или больше самого числа, или равны самому числу. Например, сумма сомножителей 10 (1, 2 и 5) равна только 8. Число 10 называется неполным числом. Сумма сомножителей числа 12 (1, 2, 3, 4 и 6) равна 16, то есть она больше самого числа. Такие числа, как 12, называются избыточными.

Сумма сомножителей числа 6 (1, 2 и 3) равна самому числу, то же самое относится и к числу 28 (1, 2, 4, и 7). Такие числа греки называли совершенными.

Есть еще одна забавная закономерность. Сумма сомножителей числа 220 (1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110) равна 284, и в то же время сумма сомножителей числа 284 (1, 2, 4, 71, 142) равна 220. Такие числа греки называли содружественными числами.

Разделение чисел на простые, совершенные, содружественные и так далее не имеет большой практической ценности, но в течение тысячелетий числовые закономерности вызывали восторг и любопытство математиков. Интерес к ним не угас и в наши дни.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (1 голосов, рейтинг: 5,00 с 5)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>