Понятие дроби

То, что обычный человек сделал с обычными единицами измерения, смогут сделать математики со своими абстрактными числами. Почему бы не разделить единицу на две равные части, на три, на четыре и так далее? Для того чтобы такое деление не было бесполезным, надо присвоить этим частям единицы собственные названия. Затем надо найти удобный символ для этих частей единицы. И наконец, надо разработать систему, которая позволит оперировать с этими частями и производить обычные арифметические операции.понятие дроби

Далее, если с долями чисел можно манипулировать так же, как с обычными числами, это означает, что части чисел можно рассматривать как обычные числа как в практической, так и в теоретической сфере применения.

Названия для частей чисел пришли из обыденной речи. Две равные части называют половинами. Части, которые получаются при делении числа на какое-то количество долей, называются в соответствии с количеством этих долей, то есть третьи, четвертые, пятые и так далее.

Половина — это то, что получается при делении единицы на 2 части. Другими словами, это 1:2. При таком делении мы не получим обычного целого числа, и бессмысленно его искать. Нужно просто выбрать обозначение для данной арифметической операции. Таким обозначением стало \frac12. Его можно прочесть как одна вторая, или половина. Если мы делим 1 на 3, то получаем соответственно одну третью часть, или одну треть. Если делим на 5, то получаем одну пятую, и так далее. Мы не пытаемся решить эти примеры, \frac12, \frac13, \frac15 — это просто обозначения.

Когда мы пишнм, что 1:3=\frac13, мы просто утверждаем, что «единица, деленная на 3, равна единице, деленной на 3».

Это звучит обескураживающие. Кто-то может задать вопрос: а что же такое эта загадочная единица, которую мы делим на 3? Ответ может вас удивить: а какая разница, что это такое. Если это дает нас возможность манипулировать с величиной \frac13 как с обычным, всеми привычным, числом, то этого вполне достаточно.

Обозначения, приведенные выше, были введены в математику как понятие дроби (от слова «дробить»). В отличие от дробей те числа, с которыми мы имели дело раньше, называются целыми.

Также можно осуществлять разные действия над дробями, как и над целыми числами: складывать, вычитать, умножать, делить. Кроме того, дроби бывают правильными и неправильными, и из неправильной дроби можно выделить целую часть, но об этом читайте немного позже, в одной из следующих статей.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (Проголосуйте первым!)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>