Понятие логарифма и антилогарифма

Есть еще неясные моменты при использовании экспоненциальной формы записи чисел. Если мы имеем дело с числами с большим количеством нулей, все достаточно просто. Но предположим, что надо перемножить 6837 и 1822. Если мы запишем эти числа в экспоненциальной форме, то получим: 6,837х103и 1,822х103. Перемножить экспоненциальные части несложно, а вот что делать с числами 6,837 и 1,822? Мы столкнулись с той же задачей, как и при перемножении больших чисел, с той только разницей, что надо следить за положением десятичного знака. Другими словами, нам нужно представить число в такой форме, чтобы неэкспоненциальная часть была как можно короче или равнялась 1. Поскольку речь идет о десятеричной системе, нам понадобятся десятичные экспоненты.

Теперь давайте подробнее рассмотрим экспоненты на основе 10. Начнем с 100=1 и 101=10. А чему равны экспоненты между 0 и 1? Например, 100,5=102=лЛо , что приблизительно равно 3,162278. Таким же способом (но с большими сложностями) можно получить значение 10 в степени от 0 до 1. Эти величины подсчитаны и собраны в специальных справочниках в виде таблиц.

Поскольку в данном случае основанием всегда является число 10, то в таблицах обычно приводятся только показатели степени, то есть экспоненты. Отдельно записанная экспонента называется логарифмом, значение экспоненциального выражения в виде обычного числа называется антилогарифмом. Например, в выражении 102=100 справедливы следующие обозначения: —

2-логарифм 100,

а 100 — антилогарифм 2.

Таблица, приведенная ниже, в которой приведены антилогарифмы для ряда логарифмов, называется таблицей антилогарифмов.таблица антилогарифмов

В таблице приведены приближенные значения антилогарифмов, да и невозможно привести точные значения, потому что они существуют только для таких чисел, как 1000, 1010 и так далее. Однако величину антилогарифма можно вычислить с такой точностью (то есть до такого десятичного знака), которая требуется в данном конкретном случае.

Если мы пойдем в обратном направлении, мы можем любое число от 1 до 10 представить как 10 в какой-то степени. Другими словами, для каждого числа при помощи соответствующих методик можно вычислить эквивалентный логарифм.

Ниже приводится краткая таблица логарифмов для ряда обычных чисел. Подробные таблицы логарифмов, в которых можно найти логарифм для любого числа, содержатся в ряде справочников.

Таблица логарифмов

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (2 голосов, рейтинг: 5,00 с 5)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>