Бесконечное количество бесконечностей

В 1896 году математик Георг Кантор выдвинул теорию «трансфинитных чисел», согласно которой существует бесконечное количество бесконечностей разного рода. Эти бесконечности он обозначил буквой «алеф» древнееврейского алфавита. Каждую такую бесконечность обозначали при помощи правого нижнего индекса при букве Георг Кантор«алеф»:

\aleph_{0}, \aleph_{1}, \aleph_{2}, \aleph_{3}...

Первая бесконечность называется «алеф-ноль» и соответствует бесконечной последовательности целых чисел. Это означает, что бесконечность, описываемая раньше, может быть самой малой из существующих бесконечностей. Другими словами, до сих пор не открыта такая бесконечная последовательность чего бы то ни было, которая не была бы счетной с последовательностью целых чисел по той причине, что остались бы лишние целые числа.

Считается, что следующая по порядку последовательность, «алеф-один» (\aleph_{1}), представляет собой С, или бесконечность континуума, но это положение еще не было доказано. Никому не удалось обнаружить бесконечной последовательности чего бы то ни было в промежутке между «алеф-ноль» (\aleph_{0}) и С, но никто также и не доказал, что существование такой бесконечности невозможно.

Бесконечность количества разнообразных кривых, которые можно нарисовать на плоскости, может быть бесконечностью «алеф-два» (\aleph_{2}).

Что же касается следующих по порядку бесконечностей, то для них пока не было найдено соответствия. Тем не менее уже существует концепция бесконечного разнообразия бесконечностей, которое начинается с обычной бесконечной последовательности целых чисел, наименьшей из возможных бесконечностей.

Таким образом, человек, на заре развития научившийся различать 1 и 2, путем проб и ошибок двигался к вершинам познания и в наши дни может бесстрашно оперировать такими понятиями, как многообразие бесконечностей.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (Проголосуйте первым!)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>