Признаки делимости на 4, 8, 11 и 25

«Детских» признаков делимости на 3 и на 9, как вы уже могли убедиться, маловато для решения задач, связанных с делимостью целых и натуральных чисел, но еще более «детскими» являются признаки делимости на 4, 8 и 25, а несколько более сложный признак делимости на 11 очень прост и полезен в применении — вы это также видели.Признаки делимости

Признак делимости на 4 состоит в том, что

натуральное число делится на 4 тогда и только тогда, когда число, состоящее из двух его последних цифр, делится на 4

Этот признак вполне очевиден — если отбросить от заданного числа его две последние цифры, т.е. разбить его на соответствующие два слагаемых, то первое слагаемое будет оканчиваться на два нуля, т.е. делиться на 100, а значит, и на 4, и поэтому все зависит от второго, двузначного слагаемого.

Точно так же очевиден и аналогичный признак делимости на 8:

натуральное число делится на 8 тогда и только тогда, когда число, состоящее из трех его последних цифр, делится на 8

Для его доказательства достаточно отбросить эти три цифры и заметить, что 1000 делится на 8.

Признак делимости на 11 можно сформулировать следующим образом:

натуральное число делится на 11 в том и только в том случае, когда на 11 делится разность между суммой его цифр, стоящих на четных местах, и суммой его цифр, стоящих на нечетных местах.

Проще всего его можно доказать (и даже придумать, вывести) с помощью сравнений (естественно, по модулю 11). Правда, тут возникает одна трудность эвристического характера: надо догадаться, что степень числа 10 с нечетным показателем плюс единица делится на 11.

Догадавшись же, доказать это совсем просто даже на «детском» уровне: 10^n=999...99+1=999...90+9 + 1=999...90+10, и при нечетном n в первом слагаемом правой части число девяток четно, т.е. это слагаемое делится на 11. Можно сослаться и на формулу суммы нечетных степеней, а еще проще заметить, что 10\equiv-1 (mod 11), так что 10 в нечетной степени тождества сравнимо с -1, т.е. 102k-1 делится на 11.

Проведем доказательство: так как 10\equiv-1 (mod 11), то при четном n 10^n\equiv1, а при нечетном n 10^n\equiv-1, и поэтому c=a_{0}\times10^k+a_{1}\times10^{k-1}+a_{2}\times10^{k-2}+...+a_{k-1}\times10+a_{k}\equiv a_{k}-a_{k-1}-a_{k-2}-a_{k-3}+...+a_1\times(-1)^{k-1}+a_{0}\times(-1)^k множитель (-1)^k обеспечивает здесь нужное чередование знаков, и показатель степени подобран так, чтобы при четном k последнее слагаемое a_{0}\times(-1)^k совпадало с а0. Выражение, стоящее в правой части этого равенства, и есть разность между суммой s цифр, стоящих в числе с на четных и на нечетных местах. Ее удобно называть знакочередующейся суммой цифр числа с.

Мы доказали в результате, что с-s=0, т.е. число с и знакочередующаяся сумма его цифр в при делении на 11 дают одинаковые остатки, и мы получили более сильное утверждение, чем требовалось.

Признак делимости на 11 можно доказать, конечно, и без использования метода сравнений — как с применением формулы суммы нечетных степеней, так и не опираясь на «тяжелую артиллерию» алгебры.

Но и «азбучные» признаки делимости на 3 и на 9 на самом деле нуждаются в уточнении, и их можно формулировать примерно так:

натуральное число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3

И то же самое касается признака делимости на 9. В такой формулировке подчеркивается, что если сумма цифр числа не делится на 3, то и само число не делится на 3.

С точки зрения решения задач еще более важно, что из этих признаков, строго говоря, можно узнать только делится или не делится данное число соответственно на 3 и на 9. Но для решения многих, в том числе и весьма несложных задач совершенно необходимы их обобщения, аналогично тому, что мы имели при рассмотрении числа 11: как и в этом случае, равны соответствующие остатки, т.е.

остаток от деления числа на 3 совпадает с остатком от деления суммы его цифр на 3; остаток от деления числа на 9 совпадает с остатком от деления суммы его цифр на 9.

Эти утверждения почти доказаны в 5-м классе — достаточно повторить проведенные там рассуждения и добавить к ним, что разность между числом и суммой его цифр делится на 3 и на 9, т.е. соответствующие остатки совпадают.

Ясно, что аналогичные утверждения верны и для признаков для 4 и 8.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (5 голосов, рейтинг: 2,80 с 5)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>