Проблема Пуанкаре

С древних времен развитие математических знаний всегда сопровождалось появлением разного рода задач, которые не поддавались решению на протяжении длительного времени, несмотря на многочисленные и упорные попытки ученых. Эти задачи называют проблемами и иногда присваивают им имена исследователей, которые первыми сформулировали Анри Пуанкаресоответствующий вопрос или обнаружили новый факт (например экспериментально), выдвинув соответствующую гипотезу.

Некоторые из этих проблем имеют важное прикладное значение, а некоторые носят чисто теоретический характер. В любом случае поиск решения той или иной проблемы всегда приводил к бурному развитию многих областей математики, а главное — к появлению новых методов исследования.

Одна из таких проблем была поставлена великим французским математиком Анри Пуанкаре в 1904 г. На современном языке она формулируется следующим образом: доказать, что любое замкнутое односвязное трехмерное многообразие гомеоморфно трехмерной сфере (ниже мы подробно остановимся на том, что все это значит). Надо сказать, что аналогичное утверждение для двумерных многообразий было к тому времени уже хорошо известно и полностью доказано. Изучая свойства произвольных многообразий, Пуанкаре в 1900 г. анонсировал доказательство более общей теоремы: любое замкнутое [\frac n2] - связное n-мерное многообразие гомеоморфно n-мерной сфере.

Однако вскоре он обнаружил ошибку в своих многомерных рассуждениях и оставил потомкам указанную теорему в виде гипотезы. При этом особое внимание Пуанкаре уделил именно трехмерному случаю.

Попытки доказать n-мерную гипотезу Пуанкаре предпринимали математики многих поколений. Однако долгие годы все эти попытки оставались безуспешными. Прогресс был достигнут лишь в начале 60-х гг. прошлого века в работах американских математиков Джона Столлингса и Стивена Смейла. Они представили совершенно разные доказательства n-мерной гипотезы Пуанкаре для больших n. А именно, Столлингс решил проблему при n>6, а Смейл — при n>4 (позднее английский математик Кристофер Зиман распространил доказательство Столлингса на случаи n=6 и n=5). Случай же n=4 поддался решению лишь через два десятилетия: четырехмерная гипотеза Пуанкаре была доказана в 1982 г. также американским математиком Майклом Фридманом. Кстати, Смейл за свои результаты был награжден Филдсовской медалью на Международном математическом конгрессе 1966 г. в Москве, а Фридман был удостоен Филдсовской медали 1986 г. на Международном математическом конгрессе в Беркли.

Что касается основного (по Пуанкаре) случая n=3, то он оказался самым трудным и продержался до наших дней. Более того, в 2000 г. математический институт в Кембридже (США), основанный бизнесменом Лендоном Клеем, обнародовал список из семи широко известных нерешенных математических проблем, которые, по мнению научного комитета института, будут играть важную роль в математике нового тысячелетия. За решение любой из этих проблем институт Клея назначил награду в один миллион долларов. Под пятым номером в этом списке стоит трехмерная проблема Пуанкаре. Таким образом, эта математическая задача не случайно была объектом пристального внимания на протяжении сотни лет, и есть смысл поговорить о ней более подробно.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (1 голосов, рейтинг: 5,00 с 5)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>