Актуальная и потенциальная бесконечность

Бесконечность недостижима, следовательно, ее невозможно измерить. У нее отсутствует то, что древние греки именовали метрон, поэтому она принадлежит к категории хаоса. По этой причине Платон и Пифагор называли бесконечность апейрон. Позднее Анаксимандр придал этому слову смысл, схожий с тем, что подразумеваем под этим понятием мы, — «беспредельный».Актуальная и потенциальная бесконечность

Однако наиболее смело и систематично с проблемой бесконечности работал Аристотель, определив в своем труде « Физика» два разных типа бесконечности: потенциальную бесконечность — неостановимый процесс роста, и актуальную бесконечность — реально существующую величину, не имеющую конечной меры. Математики долго спорили об этих определениях, пока Кантор не доказал математически существование бесконечного числа актуальных бесконечностей с помощью инструмента, который создал сам — теории множеств.

Слова, обозначающие два различных типа бесконечности, не совсем удачны или по меньшей мере неинтуитивны.
Возможно, более уместно (но тоже не совсем удобно) было бы называть актуальную бесконечность теоретической, а потенциальную бесконечность — истинной бесконечностью.

Рассмотрим разницу между этими понятиями на примере. Последовательность натуральных чисел 1, 2, 3, 4,... бесконечна. Изначально никто не подвергает это сомнению, поскольку для любого сколь угодно большого числа n мы всегда можем получить следующее число, n+1. Но одно дело — иметь возможность выполнить подобное действие, и совсем другое — сделать это в реальности и получить результат. Это очень тонкое различие. «Иметь возможность выполнить действие» определяет потенциальную бесконечность, полученный результат такого действия — актуальную бесконечность.

Покинем на время мир математики, чтобы в более свободной форме объяснить разницу между этими понятиями. Предположим, что я нарисовал перед собой на полу прямую. Если я сделаю шаг вперед, то перешагну ее. Это потенциально возможное действие. Когда я выполнил это действие и оказался по другую сторону прямой, я актуализировал этот потенциал. Существует четкая разница между потенциально возможным действием и совершенным в действительности. Например, может случиться так, что я соберусь начать действие, но произойдет землетрясение и в полу образуется огромный разлом, который не даст мне перешагнуть прямую.

То, что никто не может записать все целые числа, — неоспоримый факт. Также верно, что никто никогда не видел двух параллельных прямых, поскольку прямые бесконечны и мы можем видеть лишь отрезки этих прямых. Значит ли это, что параллельные прямые не существуют? Они существуют настолько же, насколько существуют прямые вообще, но есть ли на самом деле бесконечная прямая? Евклид в своей знаменитой книге «Начала» пытался рассматривать эту тему: упоминая прямые, он говорил об «отрезках, длина которых может быть произвольно большой». Это весьма явная параллель с потенциальной бесконечностью.

Поделиться в соц. сетях

Опубликовать в Facebook

Оцените материал:

1 Star2 Stars3 Stars4 Stars5 Stars (Проголосуйте первым!)
Loading...Loading...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>