Платим без сдачи.
Очень интересная задача о пятиалтынном была подана в предыдущем посте, здесь рассмотрим еще одну не менее интересную и даже полезную задачу, которая связана с разменом денег.
Данная задача о размене денег связана с деньгами номиналом в 3 и 5 рублей. Вопрос к этой задаче таков: «Какие суммы можно уплатить без сдачи купюрами в 3 и 5 рублей?»
Покупку в один и два рубля «трешками» и «пятерками» не оплатишь, а в три, пять и шесть рублей — можно оплатить. Четырехрублевую и семирублевую покупки снова нельзя оплатить, а восьми, девяти — и десятирублевые покупки можно оплатить этими купюрами, так как 8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 +5.
А дальше? Оказывается, что дальше любую сумму денег можно оплатить этими купюрами. Действительно, добавив к полученным трем суммам по «трешке», получим 11, 12 и 13 рублей. Добавив еще по «трешке», получим 14, 15 и 16 рублей и т. д.
Ну а если брать другие купюры? «Пятерками» и «десятками» можно уплатить без сдачи лишь сумму, кратную пяти, вообще если купюры в р рублей и k рублей, и числа р и k имеют общий делитель, отличный от единицы, то ими можно уплатить без сдачи только суммы, кратные этому делителю. Общее утверждение состоит в следующем:
«Если имеется неограниченное количество купюр достоинством в р и k рублей, причем числа р и k взаимно просты, то любую сумму, большую pk-р-k рублей, можно уплатить без сдачи этими купюрами».
В случае «трешек» и «пятерок» получаем число pk-р-k = 15-3-5 = 7.
Размен денег — настолько частая операция, что возникают сплошь и рядом нестандартные ситуации, приводящие к интересным математическим задачам. Так что учите математику, она вам пригодится в жизни :)!!! Хотя и почитать хорошие сочинения не помешает для личного развития.
- Интересный размен денег.
- Канцмастер: канцтовары оптом
- Дистанционное обучение – в чём его преимущества?
- Актерское мастерство для детей. Почему вам это нужно?