Условные обозначения в теории множеств

Точно так же как детям, которые только научились читать, нравятся книжки со сказками, где много картинок и мало букв, так и взрослым нравится научно-популярная литература, где много текста и мало формул. И это вполне понятно: большинство формул, кажущихся простыми, требуют серьезной математической подготовки. Но символы, Условные обозначения в теории множествиспользуемые в теории множеств, исключение: ведь речь идет о логическом языке, цель которого — ясность и удобство. Предположим, что мы хотим представить множество (обозначим его буквой А), образованное всеми натуральными числами от 1 до 15, причем четными. И мы уже это сделали. Ни один человек из прочитавших часть предыдущего предложения, выделенную курсивом, не усомнился в том, какие
именно элементы образуют множество А. Это же можно записать более кратко:

А = {2,4, 6, 8, 10, 12,14}.

Или так:

А = {х такие, что х — четное число на интервале от 1 до 15}.

На языке математики слова «такие, что…» обозначаются символом «/»:

А = {х /х — четное число на интервале от 1 до 15}.

Первая характеристика из использованных нами называется перечислением и означает список всех элементов множества. Например,

V = {а, е, ё, и, о, у, ы, э, ю, я}

является перечислением всех гласных звуков русского языка. Если множество задано описанием свойств его элементов, тогда указывается свойство, которым обладают все элементы множества и только они. Например,

V={x /х — гласный звук русского языка}.

Говорят, что множество определено корректно, когда можно однозначно установить, принадлежит некий элемент этому множеству или нет. Принадлежность обозначается символом $\in$. Если мы обозначим множество всех четных чисел буквой Р, то $4\in P$. Чтобы обозначить непринадлежность к множеству, используют этот же символ, но перечеркнутый: $\notin$. То есть мы можем записать, что $5\notin P$.

Множество может являться частью другого множества. Например, четные числа являются частью большего множества целых чисел (его обычно обозначают буквой Z). В этом случае говорят, что одно множество является подмножеством другого и обозначают это отношение знаком $\subset$:

$P\subset Z$.

Например, если А={23, 4, 815, 5, 6, 200, а, z} и В={4, 6, z}, то $B \subset A$.

Заметим, что два последних множества, определенные перечислением символов, образованы произвольными элементами. Важно отметить, что между элементами множества не обязательно должно существовать какое-либо особенное отношение и они не обязаны соответствовать какому-либо определенному закону. С другой стороны, говоря о множествах Р и Z, мы ввели два бесконечных множества. Подобные множества также можно задать перечислением элементов:

Р = {2,4, 6, 8, 10…},

Z ={…-3, -2,-1,0,1,2,3…},

где многоточиями обозначена бесконечная последовательность элементов. Данное представление бесконечных множеств выполнимо, если не влечет появления неоднозначности.

Материалы по теме:
Поделиться с друзьями:
Оцените материал:
1 Star2 Stars3 Stars4 Stars5 Stars (4 голосов, рейтинг: 4,75 с 5)
Загрузка...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *