Формулы понижения степени являются одним из видов основных тригонометрических формул. Они выражают степени (2, 3, …) тригонометрических функций синус, косинус, тангенс, котангенс через синус и косинус первой степени, но кратного угла (`\alpha, \ 3\alpha, \ …` или `2\alpha, \ 4\alpha, \ …`).
Содержание статьи:
Список всех тригонометрических формул понижения степени
Запишем данные тождества для тригонометрических функций от 2-й по 4-ю степень угла `\alpha`, а также для угла `\frac \alpha 2` и для произведения синус на косинус. Для удобства разделим их на группы.
Для квадрата
Формулы этой группы, особенно две первые, наиболее нужны. Они применяются при решении тригонометрических уравнений, интегралов и т. д.
`sin^2 \alpha=\frac{1-cos \ 2\alpha}2`
`cos^2 \alpha=\frac{1+cos \ 2\alpha}2`
`tg^2 \alpha=\frac{1-cos \ 2\alpha}{1+cos \ 2\alpha}`
`ctg^2 \alpha=\frac{1+cos \ 2\alpha}{1-cos \ 2\alpha}`
Для куба
Тождества этой группы и следующих встречаются гораздо реже, но это не повод их не знать.
`sin^3 \alpha=\frac{3sin \ \alpha-sin \ 3\alpha}4`
`cos^3 \alpha=\frac{3cos \ \alpha+cos \ 3\alpha}4`
`tg^3 \alpha=\frac{3sin \ \alpha-sin \ 3\alpha}{3cos \ \alpha+cos \ 3\alpha}`
`ctg^3 \alpha=\frac{3sin \ \alpha+sin \ 3\alpha}{3cos \ \alpha-cos \ 3\alpha}`
Для 4-й степени
`sin^4 \alpha=\frac{3-4cos \ 2\alpha+cos \ 4\alpha}8`
`cos^4 \alpha=\frac{3+4cos \ 2\alpha+cos \ 4\alpha}8`
Для функций половинного угла
Это формулы половинного угла. Но когда они записаны именно в таком виде, то их можно отнести и к тодествам понижения степени.
` sin^2 \frac \alpha 2=\frac{1-cos \alpha}2`
` cos^2 \frac \alpha 2=\frac{1+cos \alpha}2`
`tg^2 \frac \alpha 2=\frac{1-cos \alpha}{1+cos \alpha}`
`ctg^2 \frac \alpha 2=\frac{1+cos \alpha}{1-cos \alpha}`
Для произведения синус на косинус
`sin^2 \alpha \cdot cos^2 \alpha=\frac{1-cos \ 4\alpha}8`
`sin^3 \alpha \cdot cos^3 \alpha=\frac{3sin \ 2\alpha-sin \ 6\alpha}32`
`sin^4 \alpha \cdot cos^4 \alpha=\frac{3-4cos \ 4\alpha+cos \ 8\alpha}128`
`sin^5 \alpha \cdot cos^5 \alpha=\frac{10sin \ 2\alpha-5sin \ 6\alpha+sin \ 10\alpha}512`
Доказательство
Теперь перейдем непосредственно к выводу формул понижения степени тригонометрических функций.
Чтобы доказать их для квадрата, нам понадобятся фождества двойного угла `cos \ 2\alpha=1-2 \ sin^2 \alpha` и `cos \ 2\alpha=2 \ cos^2 \alpha-1`.
Формулу понижения степени синуса в квадрате получим, разрешив первое равенство относительно ` sin^2 \alpha`: `sin^2 \alpha=\frac{1-cos \ 2\alpha}2`.
Аналогично и с косинусом в квадрате, получим тождество, разрешив второе равенство относительно ` cos^2 \alpha`: `cos^2 \alpha=\frac{1+cos \ 2\alpha}2`.
Формула понижения степени тангенса и котангенса автоматически выводится из определений этих функций. Поскольку `tg \alpha=\frac {sin \alpha}{cos \alpha}`, то `tg^2 \alpha=\frac {sin^2 \alpha}{cos^2 \alpha}=` `\frac {\frac{1-cos \ 2\alpha}2}{\frac{1+cos \ 2\alpha}2}=\frac{1-cos \ 2\alpha}{1+cos \ 2\alpha}`. Аналогично получим `ctg^2 \alpha=\frac {cos^2 \alpha}{sin^2 \alpha}=` `\frac {\frac{1+cos \ 2\alpha}2}{\frac{1-cos \ 2\alpha}2}=\frac{1+cos \ 2\alpha}{1-cos \ 2\alpha}`.
Для лучшего усвоения теоретического материала рекомендуем посмотреть видео, где подробно описывается процесс доказательстве первых двух формул:
Если формулы тройного угла `sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha` и
`cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha` разрешить относительно `sin \ 3\alpha` и `cos \ 3\alpha`, то получим формулы понижения степени для синуса и косинуса в кубе: `sin^3 \alpha=\frac{3sin \ \alpha-sin \ 3\alpha}4` и `cos^3 \alpha=\frac{3cos \ \alpha+cos \ 3\alpha}4`.
Доказать данной равности для синуса и косинуса можно, воспользовавшись два раза формулами понижения квадратов:
`sin^4 \alpha=(sin^2 \alpha)^2=(\frac{1-cos \ 2\alpha}2)^2=` `\frac{1-2cos \ 2\alpha+cos^2 2\alpha}4=\frac{1-2cos \ 2\alpha+\frac{1+cos \ 4\alpha}2}4=` `\frac{3-4cos \ 2\alpha+cos \ 4\alpha}8`;
`cos^4 \alpha=(cos^2 \alpha)^2=(\frac{1+cos \ 2\alpha}2)^2=` `\frac{1+2cos \ 2\alpha+cos^2 2\alpha}4=\frac{1+2cos \ 2\alpha+\frac{1+cos \ 4\alpha}2}4=` `\frac{3+4cos \ 2\alpha+cos \ 4\alpha}8`.
Общий вид формул понижения степени
Для четных показателей степени (n=1, 2, 3,…):
`sin^n \alpha=\frac {C_\frac n 2^n}{2^n}+\frac1{2^{n-1}} \cdot \sum_{k=0}^{\frac n 2 -1} (-1)^{\frac n 2 -k} \cdot C_k^n \cdot cos((n-2k) \alpha)` и `cos^n \alpha=\frac {C_\frac n 2^n}{2^n}+\frac1{2^{n-1}} \cdot \sum_{k=0}^{\frac n 2 -1} C_k^n \cdot cos((n-2k) \alpha)`.
Для нечетных показателей степени (n=3, 5, 7,…):
`sin^n \alpha=\frac1{2^{n-1}} \cdot \sum_{k=0}^{\frac {n-1}2} (-1)^{\frac {n-1} 2 -k} \cdot C_k^n \cdot sin((n-2k) \alpha)` и `cos^n \alpha=\frac1{2^{n-1}} \cdot \sum_{k=0}^{\frac {n-1}2} C_k^n \cdot cos((n-2k) \alpha)`.
Примеры решения задач с применением формул понижения степени
Пример 1. Воспользуйтесь формулой понижения степени для `cos^2 4\alpha`.
Решение. Применив формулу `cos^2 \alpha=\frac{1+cos \ 2\alpha}2`, получим `cos^2 4\alpha=\frac{1+cos 2\cdot\ 4\alpha}2=\frac{1+cos 8\alpha}2`.
Ответ. `cos^2 4\alpha=\frac{1+cos 8\alpha}2`.
Пример 2. Используя выше указанные тождества, вычислить `sin^2 \frac \pi 8`.
Решение. Согласно формуле `sin^2 \alpha=\frac{1-cos \ 2\alpha}2`, понизим степень синуса. Получим `sin^2 \frac \pi 8=\frac{1-cos \ 2\frac \pi 8}2=\frac{1-cos \frac \pi 4}2`. Поскольку `cos \frac \pi 4=\frac {\sqrt 2}2`, то `sin^2 \frac \pi 8=\frac{1-cos \frac \pi 4}2=\frac{1-\frac {\sqrt 2}2}2=\frac{\frac {2-\sqrt 2}2}2=\frac {2-\sqrt 2}4`.
Ответ. `sin^2 \frac \pi 8=\frac {2-\sqrt 2}4`.
Отметим, что формулы понижения степени в тригонометрии чаще всего используются при решении уравнений и преобразовании выражений.
- Тригонометрические формулы: косинус, синус и тангенс двойного угла
- Формулы половинного угла тригонометрических функций
- Все формулы по тригонометрии
- Формулы приведения тригонометрических функций